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The linear stability of a uniformly internally heated, self-gravitating, rapidly rotating 
fluid sphere is investigated in the presence of an azimuthal magnetic field Bo(r, 8) 4 
and azimuthal shear flow Uo(r,  8) 4 (where ( r ,  8,#) are spherical polar coordinates). 
Solutions are calculated numerically for magnetic field strengths that produce a 
Lorentz force comparable in magnitude to that of the Coriolis force. The critical 
Rayleigh number R, is found to  reach a minimum here and the qualitative behaviour 
of the thermally driven instabilities in the absence of a shear flow (U,  = 0) is similar 
to that found by earlier workers (e.g. Fearn 1979b) for the simpler basic state 
B, = r sin 8. The effect of a shear flow is followed as its strength (measured by the 
magnetic Reynolds number R,) is increased from zero. I n  the case where the ratio 
q of thermal to  magnetic diffusivities is small (p + 1 )  the effect of the flow becomes 
significant when R, = O(q).  For R, > q three features are evident as R,  is increased : 
the perturbation in the temperature field (but not the other variables when 
R,  < O(1)) becomes increasingly localized at some point (rL, BL); the phase speed 
of the instability tends towards the fluid velocity at that  point ; and R, increases with 
R, with the suggestion that R, cc R,/q for R,  9 q although the numerical resolution 
is insufficient to  verify this. Greater resolution is achieved for a simpler problem which 
retains the essential physics and is described in the accompanying paper (Fearn & 
Proctor 1983). The possible significance of these results to  the geomagnetic secular 
variation is discussed. 

1. Introduction 
It is generally accepted that the Earth’s magnetic field has been maintained over 

geological time by the interaction of the magnetic and velocity fields in the molten 
outer core (see e.g. Moffatt 1978). This so-called dynamo process converts the kinetic 
energy of the fluid into magnetic energy, balancing the losses due to ohmic decay. 
Current thought favours buoyancy as the cause of the fluid motions; light material 
which is released a t  the inner-core boundary as the Earth cools and the inner core 
freezes being the most likely source of the buoyancy (see e.g. Gubbins, Masters & 
Jacobs 1979; Loper & Roberts 1983). An understanding of the behaviour of the 
Earth’s magnetic field thus requires a study of convection in a rapidly rotating system 
in the presence of a magnetic field. The full hydromagnetic dynamo problem involves 
the simultaneous solution of the Navier-Stokes equation and the magnetic induction 
equation, which together form a complicated nonlinear system. Most progress in 
understanding the dynamo mechanism has been made by studying the simpler 
kinematic dynamo problem, which solves only the induction equation for a given 
velocity field U, and neglects the back reaction of the magnetic field B on the flow 
(see Moffatt 1978). Another approach to gaining some understanding of the behaviour 
of the Earth’s field has been to neglect the need for the maintenance of the field and 
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look a t  the linear stability of some basic state B,, U,. Such studies have led to  the 
discovery of a large number of different mechanisms for instability; buoyancy or 
magnetically driven, diffusive or non-diffusive, and on all possible timescales from 
inertial to thermal diffusion. Reviews have been made by Acheson & Hide (1973), 
Acheson (1978a), Roberts (1978) and Eltayeb (1981). 

The first studies of the onset of convection in rapidly rotating magnetic systems 
used a plane layer geometry (BBnard layer) and a uniform magnetic field. Perhaps 
the most important result of this work was that,  although, individually, rotation and 
magnetic fields inhibit convection, adding a magnetic field to  a rapidly rotating 
system can counteract the geostrophic constraint and facilitiate convection (see 
Chandrasekhar 1961; Eltayeb & Roberts 1970; Elyayeb 1972, 1975). The critical 
Rayleigh number R, falls as the magnetic .field strength (as measured by the 
parameter A defined in (2.5)) increases until the Lorentz force has grown to balance 
the Coriolis force (A = O(1)).  At higher field strengths the magnetic field reverts to  
its more familiar role of inhibiting convection and .El, increases with A. Thus 
convection is most easily driven when A = 0(1), and it  has been suggested that 
perhaps i t  is in this parameter range that the geodynamo would operate most 
efficiently (see e.g. Soward 1 9 7 9 ~ ) .  

A plane layer with a uniform magnetic field is not a very realistic model for the 
Earth’s core, but a spherical geometry is difficult to  work with. Intermediate models 
have been studied by Acheson (1973, 1 9 7 8 ~ )  (cylindrical geometry) and Soward 
(19796) (plane layer), who both consider a toroidal magnetic field B, = B,(s) (6, where 
s is the distance from the rotation axis. Such studies retain a certain amount of 
mathematical simplicity, while the cylindrical magnetic-field geometry is rather 
closer to the geomagnetic field. Much effort has been made to identify the travelling- 
wave instabilities of such systems with the geomagnetic secular variation (GSV) and 
perhaps too much emphasis has been placed on finding waves that show a preference 
for westward propagation. No satisfactory explanation of the GSV has yet been 
achieved. 

The principal aim of the linear stability studies has been as a complement to the 
kinematic dynamo problem, to investigate how the presence of a magnetic field 
influences the convective motions which are thought to generate the field. For this 
purpose i t  has been argued that the precise form of the field is unimportant and the 
field that is, mathematically, the easiest to work with (B, = BM s(6) has generally been 
chosen (see Malkus 1967; Eltayeb & Kumar 1977; Roberts & Loper 1979; Soward 
1979b; Fearn 1979u, b) .  This claim seems to be quite tenable since studies with this 
field give results qualitatively similar to those obtained with a uniform field; thermal 
instabilities being most easily driven when A = O(1).  Indeed, the results of this paper 
which are for B, = B,(r, 0) 8 (where ( r ,  8, $) are spherical polar coordinates) confirm 
this. However, the choice of the basic state is important because the magnetic field 
can itself be unstable when A 2 O( 1) .  Many different instability mechanisms have 
been discovered (see Roberts & Loper 1979; Soward 1979b; Fearn 19793) and these 
have considerably complicated the stability picture. It has therefore become necessary 
to investigate the conditions under which the magnetic field becomes unstable. 
Almost all the work to  date has ben concerned with the one field (B, = B,s$) so no 
general rules for the stability of other fields can be predicted. Some progress has been 
made by Acheson (1973, 1978u, 1982) using a local analysis for basic states of the 
form 

and his predictions for the existence of field gradient and buoyancy-catalysed 

(1 .1 )  B, = BOW 8, u,.= U,(s) (6, 
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instabilities are consistent with the global results for the field B, = BMs8 (Fearn 
19793). An extension of the local analysis to the more general basic state 

B, = Bob, 48, u, = U,(s, 4 4  (1.2) 
(where z = r cos 6 is the coordinate in the direction of the rotation axis) is discussed 
in appendix A (see also Acheson 19783). Generalized forms (A 11)  and (A 15) of 
Acheson’s stability criteria are found and these predict that  z-structure is 
destabilizing. To date, no global results exist to complement this local analysis. 

The subject is thus at a stage where the linear stability of the basic state 

B, = Bo(r, 0) 8, U, = uo(r, 0) 8 
needs to be tackled. There are several reasons for this. Magnetic fields B,(s)$ are 
special in that  no flow U, is required for the basic state to be in equilibrium (see e.g. 
Braginsky 1980). Only the field B, oc s has been studied in detail and we only have 
Acheson’s local analysis to give us some indication of how typical this field is. The 
effect of the sheared flow U, has been largely neglected (primarily because of the 
added complexity i t  adds to the analysis), but, since geostrophic flows are easily set 
up in rapidly rotating systems and since a basic state with B, = B,(r, 0) requires a 
non-zero U,(r, 6) for equilibrium (see Braginsky 1980), a differential rotation is almost 
certainly present in the core and is likely to  play an important role. Indeed i t  is 
believed that a strong azimuthal flow is responsible for stretching out poloidal field 
lines to produce a large toroidal field (see Moffatt 1978). 

I n  this paper we describe the first results of a study of the linear stability of the 
basic state B,(r, 6) 8, U,(r,  0) 4 in a spherical geometry. The effects of buoyancy are 
included but we do not consider compositional buoyancy. Instead, because i t  is easier 
to work with, thermal buoyancy is used and the hope is that qualitatively the results 
will be similar. Another reason for using thermal buoyancy is that  results are 
available for the case B , K S  and they provide a very necessary check for the 
numerical calculations of this paper. The details of the model are given in $2, and 
some discussion of the numerical method of solution is given in appendix B. Results 
were computed for field strengths in the range A = O(1),  and these are discussed in 
$3. First, results for the field B, ci s are found, and these are in agreement with those 
of Fearn (19793), which involved a completely independent formulation of the 
problem. Next the field B, = B, 8r2 (1  - r2)  sin 0 cos 66 is investigated. We concen- 
trate our attention on the thermally driven modes and find that qualitatively they 
behave in much the same way as for the field B, = BMs4; the critical Rayleigh number 
reaches a minimum when A = O(1) (see figure 2 and also Eltayeb & Kumar 1977; 
Fearn 19793). Magnetically driven modes are also present, and although an exhaustive 
investigation was not carried out we found both the buoyancy-catalysed instabilities 
and the field-gradient instabilities (see Acheson 1978a; Fearn 1979b) to be present. 

The most interesting results of the present study were found when investigating 
the effect of including an azimuthal flow U,(r, 6) 8 in the basic state. We proceeded 
by fixing the form of U, and gradually increasing its strength (as measured by the 
magnetic Reynolds number R,). We fixed the ratio q of the thermal to magnetic 
diffusivities t o  be small (q = lop6) and found the effects of the shear to  become 
important when R, = O(q) .  In  the range q + R, 4 1 the critical Rayleigh number 
R, increases with R,, the temperature perturbation becomes increasingly localized 
a t  some point (rL,  OL), and the phase speed of the wave approaches the speed of the 
shear flow at that point. These results are described in detail in $3 and are discussed 
further in $4, where we speculate on what significance they may have for the 
geomagnetic secular variation. 
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2. Governing equations and method of solution 
An electrically conducting, self-gravitating fluid is contained in a rigid, electrically 

insulating spherical container of radius r,, and the whole system is rotating with 
angular velocity a, = Q,2. The fluid is internally heated by some distribution H of 
heat sources and the container is taken to  be a perfect thermal conductor. I n  the 
rotating frame of reference the equations describing the fluid velocity U, the magnetic 
field B and the temperature T are, in the Boussinesq approximation 

Po 
au 
at 
-+ (U . V)U+ 2 a 0  x U = -Vp+ vV’U+(V x B) x B/ppo+--, 

_ -  aB - v x (U x B) + r ~ 2 ~ ,  
at 

at 

aT 
-+ (U.V)T = KV’T+H, 

I V.U = V.B = 0, 

where g = -gor/r, is the gravitational acceleration and p, p,, v ,  K and 7 denote the 
magnetic permeability, mean fluid density, kinematic viscosity, thermal diffusivity 
and magnetic diffusivity, all of which are assumed to be constant. To complete the 
system (2.1) an equation of state is required. We shall use 

P = Po(1 --a(T-%)), (2.2) 
where p is the fluid density, T, is a mean temperature and a is the volume expansion 
coefficient. A linear stability analysis of (2.1) yields the equations 

au 
11 at 

E (-+ R,[(u . V) U, + (U, . V) u] -p,V2u 

= -Vp+A[(VxB,)xb+(Vxb)xBO]+qR8r, (2.3a) 

ab 
- = V x (U x B,) + R, VX (U, x b) + V2b, 
at 

(2 .3b)  

as 
at 
-+ (u. V) T,+ R,(Uo. V) 9 = qV29, ( 2 . 3 ~ )  

(2.3d, e )  V . U  = V.b  = 0, 

where the basic (unperturbed) magnetic, velocity and temperature fields are 

and b, u and 9 are the perturbations of this basic state. The mean field variables B,, 
U, and T, have been normalized using B, = max (B,J, UM = max IU,l and pro, where 
/3 = max IVT,I. The perturbation variables have been non-dimensionalized on the 
magnetic diffusion timescale 7, = r i / y ,  lengthscale r,, temperature pro, magnetic 
field strength B, and velocity y/ro. The dimensionless parameters used in (2.3) are 
a modified Ekman number E,, magnetic Reynolds number R,, magnetic Prandtl 
number p,, magnetic field strength A, diffusivity ratio q, and modified Rayleigh 
number R, defined by 
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Before tackling a solution of (2.3), one simplification will be made. The Ekman 
number is very small (E, = O(lOPg) < 1 )  and experience with this problem (see 
Eltayeb & Kumar 1977; Fearn 1979a, b)  has shown that, except when the magnetic 
field strength is very small (A < O(E,)) ,  inertial terms in the momentum equation 
are unimportant when looking for the onset of convection. I n  this paper we shall be 
restricting our attention to A = 0(1), and consequently the term in (2.3) multiplied 
by E? will be neglected. The remaining terms in (2.3) form an eighth-order system, 
which we will solve subject to the boundary conditions 

u . P  = 0, 9. = 0, b = be" 
u = b = 8 = 0  ( r = O ) ,  

where bex is an external potential field. 

expansion 
The problem (2.3) with (2.6) is separable in g5 and t ,  so we shall make the modal 

[u, b , p ,  9.1 = [W, 4, b(r, 8) ,p(r ,  81, W, 811 ept  eim@. (2.7) 

We are now left with a two-dimensional partial differential equation in r and 8. The 
problem is not further separable, but in the special case B, = s, U, = 0 it  was found 
useful to  expand the variables in spherical harmonics (see Eltayeb & Kumar 1977 ; 
Fearn 19793). The advantage of this approach depended on the fact that the basic 
field B, appears in the form F = B,/s in the governing equations. When B, = s, F = 1, 
which provides a very great simplification and is the reason why the field B, = s has 
received so much attention. We wish to study the more general basic state (2.4), so 
we have decided not to try an expansion in spherical harmonics but to solve the 
system (2.3)-(2.6) directlybyusingfinitedifferenceswithNgridpointsin ther-direction 
and L in the $-direction. The resulting matrix eigenvalue problem was solved using 
two different numerical methods ; the LR algorithm, which finds all the eigenvalues 
but is severely limited in resolution, and inverse iteration (11) which is capable of much 
better resolution but finds only one eigenvalue. Details of the numerical scheme are 
given in appendix B. 

The procedure that we adopted to find the results discussed in $3  was first to use 
LR with N = L = 8 to generate most of the data. Then, at selected points in the (A, m )  
parameter space, I1 was used with N = L = 8, 10, 15 and 20 to  find how well the 
solution converged. The I1 method provides the eigenfunction as well as the 
eigenvalue, and we drew contour plots of the dependent variables b,, bo, u,, uo and 
9. The smoothness of the eigenfunction gives some indication of the convergence, and 
comparison of the eigenfunctions at different truncation levels ensures that it is the 
same mode that is being looked a t  for the different values of N ,  L.  

3. Numerical results 
Before calculating a numerical solution, B,(r, 8),  Uo(r, 8) and G(r, 8) must be 

specified, together with the parameters A, R,, q and the azimuthal wavenumber m. 
Clearly it is only possible to explore a very restricted part of this parameter space 
and we have chosen in this paper to look mainly a t  m = I ,  2 and q = (since this 
is approximately the molecular diffusivity ratio for the Earth and should be typical 
of the limit q 4 1) .  The basic temperature profile was chosen to be that due to a 
uniform distribution of heat sources (To = -k2) since this was used by most other 
authors who have studied convection in a sphere (see Roberts 1968; Soward 1977; 
Eltayeb & Kumar 1977 ; Fearn 1979a, b). This choice facilitates comparisons with 
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previous work and it provides a typical unstable temperature gradient throughout 
the sphere. There may be a case for studying other density distributions; in particular 
there is interest in convection in a core which is unstably stratified near the inner-core 
boundary but stably stratified near the mantle-core boundary (see e.g. Whaler 1980; 
Fearn & Loper 1981), but that we leave for future study. 

The results that we describe in this paper fall into three groups : (a) B, = s = r sin 8, 
U, = 0;  ( b )  B, = 8r2(1 - r 2 )  sin 8 cos 8, U, = 0 ;  and ( c )  B, = 8r2(1 - r 2 )  sin 8 cos 0, 
U, = 64r3(1 - r 2 ) 2  sin 8 cos2 8 or U, = -Ed5 r(1 - r 2 ) 2  sin 8. The first case was used 
to show that the results from this program agreed with earlier work (Fearn 1979b), 
the second case to investigate how the choice of basic magnetic field affects the 
stability diagram, and finally case (c )  enabled the role of differential rotation to be 
studied. The precise choice of the fields B, and U, will be discussed in each subsection. 

(a)  Checking case 
The algebra involved in deriving the discretized equations gives considerable scope 
for error. It is therefore crucial to make some checks before proceeding to generate 
results for cases not previously studied. The LR and I1 methods were programmed 
mostly independently and their results were found to be in exact agreement for all 
basic states B,, U, investigated, thus providing a useful check on much of the coding. 
The basic state B,= S, U , = O  

has been investigated in the spherical geometry by Eltayeb & Kumar (1977) and by 
Fearn (19793). The qualitative behaviour found in these two papers was the same 
but there was not exact numerical agreement (see Fearn 1979b). This may have been 
because Eltayeb & Kumar failed to find the minimum critical Rayleigh number. It 
was decided to insert the basic state (3.1) into the numerical scheme described in $2 
and try to reproduce the results of Fearn (1979b). Precise agreement cannot be 
expected since we have used a finite-difference approximation in the @direction while 
Fearn used a spherical harmonic expansion. The case we chose to compare was 
A = 0.5, m = 2. The results given in table 1 of Fearn (1979b) are for q = 0, but we 
recalculated them for q = 10+ and found the answers to be the same to five or six 
significant figures. Perhaps the closest check available is to compare the results from 
Fearn (1979b) for 10 spherical harmonics and 21 radial grid points, 

(3.1) 

R, = 113.3, w, = 42.35, (3.2) 

R, = 115.0, W ,  = 43.25, (3.3) 

with the results obtained here for N = L = 20, 

where R, is the critical Rayleigh number (Re ( p )  = 0) and w, is the corresponding 
frequency (w = -1m (p)) quoted in units of the thermal diffusion timescale. The 
expected error in (3.2) and (3.3) is O(h2),  i.e. O(0.25 yo). The errors in R, and w, are 
respectively about 6 and 8 times this, which does not seem unreasonable. A further 
comparison can be made if we assume that we can write 

Ignoring the O(1/L6) term, el and e2 can be calculated given values of R, at three 
different truncations and then an estimate of the value R," can be obtained. There 
is little difference between 10 and 12 spherical harmonics, so Fearn 1979b) gives 

R," = 1156, WP = 43.30, (3.5) 
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FIauRE 1. The solution for the marginally stable mode is illustrated by contour plots of (from left 
to right) (a) b,, (b)  b,, ( c )  q8, (d )  ur, and (e) usin the quadrant 0 < r < 1 , O  < 19 < in. Both real (upper) 
and imaginary (lower) parts are shown,-and the contour intervals have been chosen the same 
for both parts. The zero and positive contours are drawn with a full line, the negative contours 
with a broken line. All eigenfunctions with dipole (quadrupole) parity have been normalized to make 
the value ofb, (b,) a t  r = l , B  = in equal to unity. This example is for basic state (3.1) with A = 05, 
m = 2, q = loT6, quadrupole parity and truncation N = L = 20, which gives R, = 115.0, 
w, = 43.2%. The eigenfunction is qualitatively the same for other values of N and L. The contour 
intervals are (a )  1.0, (b) 1.0, (c) 1.0, ( d )  20 and ( e )  30. 

and with N = L taking values 11, 16 and 20 the present method gives 

RF = 115.4, W ,  = 43.14. (3.6) 

The agreement is not precise but is very close - to within less than 0.2 yo and 0 4  yo 
respectively for R, and w,. We feel this is as good as can be expected and that this 
provides a check both for the present work and for that of Fearn (1979b), which was 
formulated completely independently. 

For comparison with the results of Q3(b), (c ) ,  the eigenfunction corresponding to 
the solution (3.3) is shown in figure 1.  

( b )  More realistic field 

Once satisfied that our program was producing sensible results we proceeded to 
explore new ground. We first focused our attention on the role that the choice of 
the basic magnetic field B, plays in determining the stability of our system. As has 
already been mentioned, the field B, = s has been extensively studied because of its 
simplicity. Here we look a t  a field that is much more representative of the Earth’s 

(3.7) 
toroidal field : 

(The factor 8 appears because we have normalized B, to have a maximum value of 
unity.) The field (3.7) has the property that i t  vanishes on the mantle-core boundary 
( r  = l ) ,  this being required since the mantle is a good electrical insulator. Also B, takes 
opposite signs in the northern and southern hemispheres as we expect for a toroidal 
field stretched out by differential rotation from a weak poloidal field. It should be 
emphasized here that the study of the field (3.7) with shear flow U ,  = 0 is somewhat 
unrealistic, but nevertheless we feel i t  is justified as a step along the way to 
understanding the stability of basic states of the form B,(s, z ) ,  U,(s, z ) .  The case where 
B, = B,(s) only is special in that when B, depends on z a steady basic state cannot 

B, = 8r2(1 -r2) sine cos8. 
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(3.8) 
d 
- (AF2-RmR) = 0, aZ 

where 

S '  S (3.9) 

(see e.g. Braginsky 1980). Thus i t  might seem meaningless to look a t  the stability 
of (3.7) without incorporating the corresponding shear flow. However, in a practical 
situation, there are several other effects which give rise to a differential rotation which 
may be expressed as 

R=nB+n,+Q,+n,, (3.10) 

where RB = AF2/Rm, R, is the thermal wind required when the body force and the 
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FIGURE 3. As figure 1 but for the field (3.7), A = 1 ,  m = 2, q = quadrupole parity and 
N = L = 20, giving R, = 319.3, o, = 36.549. The contour intervals are (a) 3.0, (b)  3.0, (c) 0 2 ,  ( d )  
50, ( e )  100. 

density gradient are not aligned, R,(s) is an arbitrary geostrophic flow (a constant 
of the integration of (3.8)), and R, denotes the rest, which includes nonlinear effects. 
These can drive differential rotation of various forms depending on the curvature 
of the container, and the distribution of the temperature gradient (Busse & Hood 
1982). It is not possible to  incorporate the full CJ given by (3.10) into our model, and, 
even if i t  were, i t  is probable that the role that differential rotation plays would be 
inextricably mixed up with the other effects present. Moreover, it is not clear what 
to choose for a,, so it seems sensible to treat R as a function that can be chosen 
independently. Obviously some physical realism is lost but this approach does enable 
us to  isolate and, we hope, to understand the role of differential rotation in the 
hydromagnetic stability of rapidly rotating systems. 

The results for the field (3.7) are shown in figure 2, which may be compared with 
figure 1 of Fearn (19793). It is possible to identify three modes of instability. First 
there are the thermally driven instabilities, which exist only for R > 0. Their 
behaviour is much the same as was found by Fearn (19793) for the field (3.1) with 
the critical Rayleigh number R, reaching a minimum O( 100) a t  A = O( 1) .  At smaller 
field strengths (A < O(1)) the magnetic field acts to balance out the Coriolis force, 
and an  increasing field facilitates convection. At higher field strengths (A > O( 1))  the 
role of the magnetic field is to inhibit thermal convection. The form of the basic field 
B, thus seems not be important as far as thermal instabilities are concerned since 
(3.1) and (3.7) give similar results. A typical eigenfunction is illustrated in figure 3, 
and the convergence behaviour is shown in figure 4. 

The second mode of instability that can be identified is the buoyancy-catalysed 
instability first studied by Roberts & Loper (1979) and Soward (19793) (see also Fearn 
19793; Acheson 1980, 1982). This mode operates on the thermal diffusion timescale 
(like the thermal instabilities described above) and requires the presence of some 
stratification before i t  can become unstable. However, this stratification may be 
either ‘stable’ or ‘unstable’ in the thermal-instability sense and i t  is therefore the 
magnetic field which is the source of the energy that drives this instability. The 
presence of the stratification gives the system some extra degrees of freedom not 
available when R = 0, which enables the magnetic energy to be released. I n  the case 
of the field (3.1), only the m = 1 mode was found to be unstable (Loper & Roberts 
1979; Soward 19796; Fearn 19793). This was in accordance with the local analysis 
by Acheson (1982) for fields B, = B,(s), which predicted instability for all 
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FIGURE 4. The manner in which the mode illustrated in figure 3 converges as the truncation is 
increased. Here N = L and Re (upper curve) and w, (lower curve) are plotted against 1/L2. The 
behaviour can be represented by a relation of the form (3.4), and the eigenfunction is qualitatively 
the same for all L. Thus although the numerical scheme gives results that are quantitatively in 
error, we expect to gain some correct qualitative information even at the N = L = 8 truncation 
level. The broken line shows the extrapolation to large N ,  L using (3.4). 

FIGURE 5 .  As figure 1 but for the field (3.71, A = 10, m = 1, q = lopg, dipole parity and N = L = 20, 
giving Re = - 1292, we = -45309. This is an example of the buoyancy-catalysed instability. The 
contour intervals are (a) 1.0, (b) 4.0, (e) 0.7, ( d )  100, (e) 100. 

0 < m2 < 4 + (2s /F)  dF/ds. For the field (3.7) we found instability a t  negative values 
of R for both m = 1 and m = 2 (see figure 2). The convergence of selected modes 
(m = 1, dipole parity, A = 10) was checked and found to be convincing, and a typical 
eigenfunction is illustrated in figure 5. There is also some evidence for instability a t  
higher values of m. The local analysis of appendix A is unable to make any predictions 
about the global stability of (3.7) because locally the field is stable in part of the sphere 
and unstable in the remainder. The size of the locally unstable region becomes smaller 
for higher values of m, so i t  seems likely that if unstable modes do exist for higher 
values of m they may be localized. The resulting short lengthscale of the instability 
could not be resolved by the present numerical scheme, so the existence of 
buoyancy-catalysed instabilities at large values of m is uncertain. 
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FIGURE 6. As figure 1 but for the field (3.7), R = 0, m = 1 ,  q = dipole parity and N = L = 20, 
giving Ac = 09565, wc = -343.7. This is an example of the field-gradient instability. The contour 
intervals are (a )  400, ( b )  2000, (c), 1009, (d )  300000, ( e )  200000. 

V 

- - 

I I 

FIGURE 7 .  The behaviour of the critical Rayleigh number R, as a shear flow is introduced and its 
strength R, is increased. The cases illustrated are for the magnetic field (3.7) and: (a )  0, flow (3.1 I ) ,  
A = 1,  m = 2, q = 
quadrupole parity, N = L = 8; (c) V, flow (3.12), A = 10, m = 1, q = dipole parity, R < 0, 
N = L = 8; ( d )  0, flow (3.12) A = 10, m = 1, y = dipole parity, R < 0, N = L = 20. The two 
cases ( c )  and (d) show that, although the poor resolution (c )  may give different quantitative results 
to the better resolution (d) ,  the qualitative behaviour is the same in both cases. 

quadrupole parity, N = L = 8; ( b )  A, flow (3.12), A = 1 ,  m = 2 ,  q = 

The third mode of instability is also magnetically driven but does not depend on 
the presence of stratification. Instability occurs when A exceeds some critical value, 
and this mode may be identified as being the magnetic-field gradient instability 
discussed by Acheson (1973, 1978a). This identification is not completely certain, 
however, because the phase speed found here (see e.g. figure 6) is much larger (by 
two orders of magnitude) than that predicted by Acheson (see also (A9)).  This 
disparity can probably be accounted for by the presence of diffusive effects since 
Acheson's analysis is made in the diffusionless limit (A + 00) .  Here we found Ac to 
be O(1) so diffusive effects must be important and may well be responsible for the 
size of the phase speed. Convincing convergence was found for the case m = 1, dipole 
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FIGURE 8. The eigenfunction corresponding to case (a )  of figure 7 is illustrated for ( i )  R, = 0, (ii) 
For each value of R,, contour plots of ( a )  8R = Re (a), ( b )  6’ = Im (8) 

and (c) Refb,) are shown. The latter is changed much less by the shear, and this is also true 
for the other variables not illustrated. The accuracy of the solution becomes poorer as R, increases, 
but the trend is quite distinct; the temperature perturbation becomes increasingly localized. In this 
case is independent of 0 and the localization is about some radius rL. Both parts of 6 are shown 
to illustrate their different behaviour. One part, 8’, has a peak at  rL  while the other, aR, has a zero 
a t  rL with a maximum and minimum on opposite sides. The details of the contour plots are as for 
figure 1. The contour intervals for (a),  ( b )  and for (c) are: (i), (ii) 0 2 ,  3.0, (iii) 0.4, 5 ,  (iv) 01, 5.  

(see figure 6) and the convergence for m = 3, dipole looks promising but the 
eigenfunction is quite detailed and the limit on resolution ( N ,  L < 20) means that 
we cannot be sure of convergence in this case. The remarks made in reference to the 
buoyancy-catalysed instability about higher values of m and the local analysis apply 
equally well to the field-gradient instability. 

(iii) lo-* and (iv) 

( c )  The eSfect of difleerential rotation 
In $3  (b )  we discussed the nature of the shear flow that can be expected in a rapidly 
rotating magnetic system, and justified studying the stability of the field (3.7) in the 
absence of any differential rotation. Having done this, we now proceed to investigate 
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FIGURE 9. As figure 8 but for case ( b )  of figure 7 .  Here R = R(r, 0) and 6 concentrates toward a 
point (rL, OL). The contour intervals are (i) 0 2 ,  3.0, (ii) 0 3 ,  3.0, (iii) 0 5 ,  7.0, (iv) 0 0 5 ,  4. 

the effect of differential rotation, and, as discussed in J3(b), we have chosen U, 
independently (so it is not necessarily given by R = QB + R, +a,). The form of U, 
chosen is (3.11) 

from Roberts (1972), and we have normalized U,  such that its maximum modulus 
is unity. This flow is in the correct sense to draw out poloidal field lines and produce 
a toroidal field like (3.7) which is directed eastward in the northern hemisphere and 
westward in the southern hemisphere. There is nothing special about this choice for 
U, (except that Q is independent of 8) and we believe the results we describe in this 
section are typical of the effect of differential rotation on convection in a rapidly 
rotating system. The strength of the differential rotation is measured by the magnetic 
Reynolds number R, defined in (2.5) and the effect of shear was investigated by 
gradually increasing R, from zero. 

The stability of the basic state (3.7), (3.11) was investigated at  only a few isolated 
points in the (A, m,  q )  parameter space because of time and resource limitations. As 
before, we chose q = lops as being a typical representative of q + 1, and in all cases 
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we found the following behaviour as the strength R, of the differential rotation was 
increased from zero : 

(i) the critical Rayleigh number R, began to increase once R, became O(q) (p 4 1 ) ;  
(ii) for R, > O ( q )  there is the suggestion that R, cc R,/q, but the resolution was 

(iii) the temperature perturbation 9 becomes increasingly localized a t  some point 

(iv) the phase speed of the instability approaches the fluid speed a t  that  point; 

These features are illustrated in figures 7 and 8. I n  the case of the flow (3.11), the 
temperature perturbation becomes localized at a particular radius rL  rather than a 
point because Q is independent of 0. Figure 9 illustrates tthe behaviour for a different 

(3.12) flow U, = 64r3( 1 - r2)2 sin 0 cos2 0. 

It is quite clear that  as R,/q becomes large the resolution that is available becomes 
completely inadequate to  cope with the short lengthscale that develops around 
( rL,  OL).  Clearly, to resolve the behaviour properly a t  large R,/q, hundreds of grid 
points are required ; a resolution quite unobtainable in the two-dimensional problem 
we are studying here. It was therefore decided to look a t  a simpler problem in a plane 
layer geometry which nevertheless retains the essential physics of the spherical 
problem. We therefore leave further discussion of the effect of differential rotation 
to the companion paper (Fearn & Proctor 1983) which solves the plane-layer problem. 

not sufficient to establish this relation;? 

(rL,  BL) as R, increases; 

w, + mR, W T L ,  0 L ) .  

4. Summary and concluding remarks 
I n  the preceding sections we discussed the solution of the linear stability problem 

in a sphere with basic state B, = B,(r, 0) $ and U, = Uo(r, 0) $. We showed that for 
B, = s, U, = 0 the results obtained here are in agreement with previous work by 
Fearn (19796). A field (3.7) which is a more realistic representative of the geomagnetic 
field was then studied and we found little qualitative difference in the behaviour of 
the thermally driven instabilities compared with B, = s; the critical Rayleigh number 
reaches a minimum O( 100) when A = O( 1 ) .  There were differences, though, when we 
looked a t  the magnetically driven instabilities. It was possible to identify two distinct 
modes : the field-gradient instability of Acheson (1973, 1978a), which is essentially 
independent of stratification, and the buoyancy-catalysed instability, which requires 
the presence of (stable or unstable) stratification to  give the system the freedom to 
release the magnetic energy. A local stability analysis (appendix A) provides stability 
criteria (A 11) and (A 15) for these modes. I n  the case of B, = s, U, = 0 the 
field-gradient instability is absent and the buoyancy-catalysed instability is present 
only for m = 1 (Roberts & Loper 1979; Soward 19796; Fearn 19796); results 
consistent with the local analysis. I n  the case of the field (3.7) both field-gradient and 
buoyancy-catalysed instabilities are present. 

Perhaps the most interesting results of the present study were found when we 
introduced a non-zero shear flow U, into the basic state. We concentrated our 
attention on the thermally driven instability but also investigated the buoyancy- 
catalysed mode. The behaviour for both is essentially the same; as R, is increased 
above O(q) 4 1 ,  the critical Rayleigh number increases, the temperature perturbation 
becomes localized a t  some point ( rL ,  0,) and the phase speed of the instability 

t This relation may be modified if the  angular velocity has a maximum in the interior of the 
domain (for details see Fearn 81. Proctor 1983). 
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approaches the fluid velocity a t  that point. The instability is thus concentrated a t  
(rL, BL) and is carried around with the flow. The instability has its own intrinsic phase 
speed with respect to the fluid (0, =# 0 when R, = 0) ,  but this is small compared to 
the fluid speed when R,  % q. It is this feature which may have some relevance to the 
geomagnetic secular variation. The observed drift of the field may represent a 
combination of the non-axisymmetric part of the field being carried along by the fluid 
in the core and the phase speed of the wave with respect to the fluid. Depending on 
the source of the field, both the fluid speed and the phase speed will differ so that 
the field observed a t  the surface may represent the net sum of fields generated a t  
different locations and travelling a t  different speeds. Such a situation need not always 
result in a westward drift of the field. Indeed there is evidence that in the past the 
overall drift has been eastward. 

A detailed investigation of the effect of the shear flow U, has not been possible 
here because of the limited resolution available. It is however possible to study a 
similar problem in a plane-layer geometry and find a solution which is separable in 
s as well as 4 and t .  The ordinary differential equation that remains has again to be 
solved numerically, but the available resolution in this one-dimensional problem is 
very much greater than we were able to achieve here. The solution is discussed in 
the accompanying paper (Fearn & Proctor 1983). 

We would like to thank Dr D. J .  Acheson, Dr C. A. Jones, Professor P. H. Roberts 
and Dr A. M. Soward for useful discussions concerning this work and its numerical 
solution. We are also grateful to the referees of this paper, whose suggestions have 
led to considerable improvements in its presentation. The inverse iteration program 
was based on one written by Dr G. 0. Roberts. This work was funded by the Science 
and Engineering Research Council of Great Britain. 

Appendix A. Local analysis 
A local stability analysis for the basic state B, = B,(s), U, = U,(s) has been made 

by Acheson (1973, 1978a, 19821, and the following criteria for instability were found: 

A > m2 

for the field-gradient instability and 

A > m2-4 

for the buoyancy-catalysed instability, where 

Global analyses have found solutions that are not localized, so we could hardly expect 
close quantitative agreement between the global and local analyses. However, the 
local results have proven to be successful in predicting certain qualitative features of 
the (admittedly rather few) global solutions. Most attention has been given to the 
case B, = s, U, = 0 (A = 0) for which the buoyancy-catalysed instability is found to 
be present (but for m = 1 only), while the field-gradient instability is absent (see 
Soward 19793; Fearn 19793). This is exactly what is predicted by (A 1)  and (A 2). It 
therefore seems worthwhile to extend the local analysis to the more general basic 
state B,(s, z ) ,  U,(s, z )  in the hope that it will a t  least guide our numerical solution 
of the global problem in the right direction. Acheson (19783) has performed this local 
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analysis, but the context is different and he does not go so far as to derive expressions 
corresponding to (A 1 )  and (A 2 ) .  This can in fact be done quite simply; before giving 
the results we briefly sketch how these conditions may be derived from the governing 
equations presented in $ 2 .  

Taking (2 .3)  with Eq set to zero as our starting point, we make the usual local 
assumption that  the lengthscale of the instability is short compared with the dimen- 
sions of the container; that  is, 

= O(E), E 4 1, 
a a  
as' az 
_ _  

but we shall not assume a short azimuthal lengthscale since we are interested in 
m = O ( 1 ) .  The appropriate scalings for the remaining variables are 

= O ( E - ~ ) ,  u = O ( l ) ,  b = O(E'),  R,, A = 0(ep2).  
a 
at 
- 

Neglecting all but the leading-order terms and making a modal expansion with all 
variables proportional to expi(Zs+nz), the governing equations reduce to a set of 
linear algebraic equations. After some manipulation, the dependent variables can be 
eliminated to give - 

o1 + ia2 
(wl + 2mAP + ia2)2 + m2A2F4 ( A-- mif)+m2AF2gR = 0, (A 6) 

where w1 = w-mR,Q, a2 = 12+n2, (A 7) 

and we have generalized the definition of A to be 

The expression (A 6) may also be derived from equation (5 .5)  of Acheson (1978 b )  by 
making the necessary modification to  convert from the compressible case he considers 
to the Boussinesq approximation. We now proceed to obtain the instability criteria. 

(a )  Field-gradient instability 
This instability is essentially independent of stratification and is diffusionless, taking 
place on a timescale short compared with the magnetic diffusion timescale (see 
Acheson 1 9 7 8 ~ ;  Fearn 1979b). So setting R and the ia2 terms in (A 8) to zero we find 

o1 = - 2mAF2 & mAF2 ( m y  - - .>" 
A non-zero growth rate is possible only if 

A > me( 1 +f), 
which may be compared with (A l ) ,  but now the definition (A 8) of A (cf. (A 3 ) )  
involves l /n,  so (A 10) may be optimized over l/n (Acheson 1982 private commun- 
ication) to give 

S 
~ 2F2 [A,  + (A: + A:);] > m2. (A 11) 
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(b)  Buoyancy-catalysed instability 
This instability takes place on the thermal diffusion timescale so we must set w1 = 4w2, 
and then for simplicity we set q = 0 in (A 6) to obtain 

(2mAF2 +ia2)2+m2A2F4 ( A-- m ~ ) + m 2 A l r ’ z R  - 0. (A 12) 

This mode is diffusive, so we can demonstrate instability by looking for a marginally 
stable state. Thus, taking w2 to be real, it  may be eliminated to give 

The buoyancy-catalysed instability takes place when R < 0,  so a necessary condition 
is that  

(A 14) 
cf. (A 2), or 

[?+A,+((?+A.>~+A:>”] > m2. 

( c )  Discussion and stability of jield (3.7) 
The two criteria (A 11) and (A 15) display two features which may be applicable to 
global solutions. The first is that (in common with (A 1)  and (A 2)) the condition for 
instability is more difficult to  satisfy the greater the azimuthal wavenumber, so we 
expect larger values of m t o  be more stable. The second feature displayed by (A 11) 
and (A 15) is that the presence of any z-structure in the basic state is destabilizing. 
It is not possible to say much more than this, but i t  is instructive to see how the 
instability criteria apply to  the field studied numerically in $3. 

Substituting (3.7) into (A l l ) ,  we find a complicated expression which reduces to 
m2 < s / z  in the limit s 9 z .  Clearly, whatever value of m is chosen, this can be satisfied 
in some region adjacent to the equator, The system is locally unstable in this region 
but locally stable elsewhere, so the local analysis is unable to  predict global 
instability. It may be that instabilities localized in the unstable region are possible, 
but these are likely to be damped more strongly by diffusive effects than global 
instabilities. The numerical scheme used to  generate the results of $3 finds the 
most-unstable mode, so i t  is unlikely to find localized instabilities. I n  any case, the 
resolution of the scheme is good enough only for modes having an O( 1 )  lengthscale. 

Appendix B. The numerical scheme 
Equations (2.3) are first written in component form with 

u = ( u r ,  ug, u+), b = (br, bo, b6), (B 1 )  

then (2.3d, e )  and 4 . ( 2 . 3 ~ )  are used to eliminate uI, b+ and the pressurep respectively, 
leaving a system of five equations in u,, u,, b,, b,, and 9. We have no boundary 
condition on uo so its radial derivative appearing in f . ( 2 . 3 )  is removed using 
a[8.(2.3a)]/dr. A further reduction of the system is possible by using 8. (2 .3a)  to 
eliminate uo, leaving a set of four coupled partial differential equations in u,, b,, bo 
and 9.. The differential operators are then replaced by second-order finite-difference 
operators using N grid pints in the r-direction and L in the 8-direction. We shall use 
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the notation 
vn,l = v(r = rn = nh,, 8 = 8, = Zh,), 

where h, = 1 / N ,  h, = n/2L, 

and v denotes any of the variables b,, b,, u, or 9. 
The boundary condition that b match to an external potential field be" involves 

some preliminary calculation. For a given truncation N ,  L i t  is necessary to solve 
for the external field to  produce boundary conditions for b, and 6, of the form 

I,-1 , 

where 1 = 1 , .  . . , L - 1 and the boundary-condition matrices B, and B, are calculated 
using the solution for the external field be* and the condition that b is continuous a t  
the boundary (see Jepps 1975; Proctor 1975). The remaining boundary conditions 
can be written in the form 

(B 4) ~231 = @ N , I  = 0 u:,l = 9091  = 091 - = 0 b r  - B 

where again 1 = 1 ,  . . . , L - 1. It is not necessary to  perform our numerical solution 
in the whole region 0 < r < 1, 0 < 8 < 77 provided that the basic state (2.4) satisfies 
certain symmetry properties about the equator (8 = &n). We shall assume B, to  be 
antisymmetric and U, and T, to be symmetric,t that  is, 

U,(r,  8)  = Uo(r,  n-O), T,(r ,  19) = T,(r ,  n-8). (B 5 )  

Then the problem splits into two parities, which we shall call dipole (b, antisymmetric; 
b,, u,, 9 symmetric) and quadrupole (b,  symmetric; be, u,, 19 antisymmetric). It is only 
necessary to compute a solution in the quadrant 0 < r < 1 , O  < 8 < in provided that 
we apply the boundary conditions 

&(r, 8)  = -B,(r, 77-8), 

ab, au, -as - 

a0 a0 a0 
dipole: b, = - = - - = 0, 

J ab 
a8 B -  

quadrupole: = b - U ,  = 9 = 0 

at 8 = in. The boundary conditions are completed by those a t  6 = 0:  

a6 
ae b = 8 = u  = a = ( )  ( m = l )  

b, = b, = u, = 9 = 0 (m > 1). 

The problem has now reduced to  the solution of a matrix eigenvalue problem of 

(B 8) 
the form AX = ~ B x ,  

where 

Two methods of solving (B 8) were used. The first is the LR algorithm (Peters & 
Wilkinson 1971a), which was used to find all 3 ( N -  1 )  (L-  1 )  complex eigenvalues 

t We consider one exception to this, the checking-case B, = r sin 0, U,  = 0. The appropriate 
changes are to reverse the parities of u, and 9 in (B 6). 
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of the above system with the variable ur eliminated. (The system then reduces to the 
form Cy = p y ) .  The maximum storage available limited N and L to 8 or less, but, since 
every eigenvalue was found, we could be reasonably sure that we were looking at the 
most-unstable mode. When a mode has been found approximately using LR, i t  can 
be determined to much greater accuracy using the method of inverse iteration (see 
e.g. Peters & Wilkinson 1971 b ) ,  which finds just one eigenvalue and the corresponding 
eigenvector. The matrix A in (B 8) is banded with width 12L-8, and the method of 
inverse iteration can take advantage of this to  reduce storage and time requirements. 
Storage for LR is 

while that for I1 is 

N 16[3(N- 1 )  (L- l)]', 

- 16[4(N-1) (L-l)(12L-8)]  

so for N = L 2 6 there is a saving using 11. Further reductions in storage can be made 
by dividing A into blocks and dealing with one block a t  a time in core, the remainder 
being stored on disc. Though this takes extra time (reading and writing to disc being 
slow) it enables the resolution to be increased to N = L = 20. I n  fact, time, rather 
than storage, constraints prevented u b  from using greater resolution. 
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